728x90
import requests
from bs4 import BeautifulSoup
import pandas as pd
# Step 1: Send an HTTP GET request to the URL
pg_num = 66
data = []
for i in range(1,pg_num+1):
url = f'https://jilbyungcase.comwel.or.kr/service/dataList?qw=&q=&gubun=%EC%A7%81%EC%97%85%EC%84%B1%EC%95%94+%EB%93%B1+%EC%95%85%EC%84%B1%EC%8B%A0%EC%83%9D%EB%AC%BC&gubun2=&viewType=&sortField=sort5&sortOrder=desc&pageIndex={i}&pageUnit=20'
response = requests.get(url)
# Step 2: Parse the HTML content of the page with BeautifulSoup
soup = BeautifulSoup(response.content, 'html.parser')
# Step 3: Locate the table and iterate through rows
table = soup.find('table', {'class': 'table-list table-case'}) # replace 'your_table_class' with the actual class name of the table
rows = table.find_all('tr')[1:] # assuming the first row is the header
# Step 4: Extract the desired data from each row
for row in rows:
cols = row.find_all('td')
cols = [elem.text.strip() for elem in cols]
data.append(cols)
# Step 5: Create a DataFrame
df = pd.DataFrame(data, columns=['연번', '신청질병 내용', '심의결과', '심의연도', '주문', '청구취지', '신청내용', '신청인주장', '진료기록 및 의학적 소견', '인정사실', '관계법령', '위원회 판단 및 결론'])
#버튼 누르기
# driver.find_elements(By.CLASS_NAME,'btn-badge')[0].click()
# Step 6: Save the DataFrame to a file
# df.to_csv('output.csv', index=False)
728x90
반응형
'2023 > 근복' 카테고리의 다른 글
크롤링 400채우기 (0) | 2023.11.02 |
---|---|
필요없는 문자 빼기 (0) | 2023.10.30 |
크롤링 판정서 1차 문서 내용 (0) | 2023.10.30 |